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SUMMARY

An alternating Crank—Nicolson method is proposed for the numerical solution of the phase-field equations
on a dynamically adaptive grid, which automatically leads to two decoupled algebraic subsystems, one
is linear and the other is semilinear. The moving mesh strategy is based on the approach proposed by
Li et al. (J. Comput. Phys. 2001; 170:562-588) to separate the mesh-moving and partial differential
equation evolution. The phase-field equations are discretized by a finite volume method in space, and the
mesh-moving part is realized by solving the conventional Euler-Lagrange equations with the standard
gradient-based monitors. The algorithm is computationally efficient and has been successfully used in
numerical simulations. Copyright © 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical study of free boundaries can be grouped broadly into two categories. One is to solve
sharp-interface problems in which one or more variables (or their derivatives) are typically discon-
tinuous across an interface, see, e.g. [1-3]. The other is to solve a system of parabolic equations
in which the interface is specified by a level set of one of the variables, see, e.g. [4-9]. The later
approach, also called phase-field approach, has two appealing features: (i) a broad spectrum of
distinct problems that can be studied by means of a single set of equations, and (ii) the interface
in these problems does not need to be tracked explicitly.

Most numerical methods used to solve the phase-field equations have used stationary uniform
meshes, see, e.g. [6, 8—10]. It is well known that it is very important that the diffused interface is
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1674 Z. TAN AND Y. HUANG

well resolved. As the phase interface moves in time, considering the fact that the phase solution is
almost invariably away from the interface region, it is natural to use adaptive meshes, rather than
uniform meshes, to compute the solution. There have been two main approaches in doing this.
One is to use the local mesh refinement method, i.e. -method, see, e.g. [5, 11-13]. The adaptive
mesh is generated by adding or removing grid points to achieve a desired level of accuracy,
which allows a systematic error analysis. However, the local mesh refinement approach requires
complicated data structures and technically complex methods/means to communicate information
among different levels of refinement. The other is to use moving mesh methods as discussed
in our paper, i.e. r-method, which requires less complicated data structures than the local mesh
refinement methods. The algorithm includes two independent parts: mesh-redistribution and partial
differential equation (PDE) evolution. The second part is independent of the first, which can be any
of the standard codes for the given PDEs. In the mesh redistribution approach, the adaptive method
can keep the total number of grid points unchanged, and cluster more grid points in areas with
singularities or large solution gradients, see, e.g. [14—17]. In the past two decades, the moving mesh
methods have been proven very useful for time-dependent problems with localized singularities,
see, e.g. [15, 16, 18—22]. The basic idea of moving mesh method is to construct a transformation
from a logical domain (or called computational domain) to the physical domain. A fixed mesh is
given on the logical domain, and the transformation is realized by solving moving mesh PDEs
or minimization problems for a mesh functional, see, e.g. [20,23-26]. Computational cost of
moving mesh methods can be efficiently minimized with locally varying time steps [16]. Recently,
Mackenzie and Robertson [27] have put forward a simple moving mesh strategy for interface
propagation problems. They have also developed a moving mesh method for one-dimensional
phase-change problems modeled by the phase-field equations [28]. The computational mesh is
obtained by equidistributing a monitor function tailored for the functional variation of the phase
field in the interfacial region. Existence and uniqueness of the discretized equations using a moving
mesh are also established. Their numerical algorithms are relatively simple and are shown to be
far more efficient than fixed grid methods. In another recent work, Beckett ez al. [29] developed
an r-adaptive finite element method for the solution of the two-dimensional phase-field equations.
They used a semi-implicit method, that is, all diffusion and source terms are treated implicitly
and the convective-like terms arising from the mesh movement are treated explicitly. Tan et al.
[15] developed a simple moving mesh method for one- and two-dimensional phase-field equations
and used the implicit Euler discretization in time. One should note that they used just only the
first-order numerical scheme in time.

The main objective of this work is to extend the second-order accurate, alternating Crank—
Nicolson method of Mu and Huang [30] to numerical computation of the phase-field equations on
adaptive moving meshes. The main contribution of this paper is to present an effective alternating
Crank—Nicolson method for the phase-field equations by decoupling automatically the phase-field
model to two algebraic subsystems. One is a symmetric positive-definite linear system that can be
easily solved by effective iteration such as the conjugate gradient method. The other is a semilinear
system that can be solved by Newton iteration method. Our moving mesh approach is based on the
strategy proposed in [22] by decoupling the mesh motion and the PDE evolution. This approach
requires the use of an interpolation to transform the information from the old mesh to the new
mesh. We first transform the governing equations into the computational domain by a local (time-
independent) mapping. The mapping is obtained via using the moving mesh approach, namely
solving the Euler-Lagrange equations involving monitor functions. This approach allows fast
solution solvers such as multi-grid methods to solve the resulting nonlinear system (the phase-field
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CRANK-NICOLSON METHOD FOR THE NUMERICAL SOLUTION 1675

equations are often solved using implicit schemes in order to advance the stability). Again, solution
interpolations are employed so that time-independent mappings at each time can be utilized. Two
numerical experiments are conducted to demonstrate the efficiency of the proposed algorithm.

This paper is organized as follows. In the next section we describe the phase-field models in
two dimension. In Sections 3 and 4, two-dimensional PDE solvers and the corresponding moving
mesh methods will be described, respectively. Numerical results for two-dimensional problems are
included in Section 5. Some concluding remarks will be made in Section 6.

2. TWO-DIMENSIONAL PHASE-FIELD PROBLEMS

In this section, we mainly investigate the use of the moving mesh approach to solve the two-
dimensional phase-field equations. Let Q C R? be a bounded domain with a Lipschitz continuous
boundary 6Q. For each ¢ we will assume that we have a decomposition of Q into subdomains Q™ (¢)
and Q7 (7) so that Q= QT (1) UT'(r) UQ ™ (r), where the interface I'(r) = QT (1) NQ ™ (¢) is smooth.
We use QT (1) and Q (¢) to express the fluid phase and the solid phase regions, respectively.
Following [29], we consider the class of sharp interface problems in the following dimensionless
form:

0, =DAH, xeQtH)UQ (1) (1a)
v=D[VO-nl;, xel(@) (1b)
0=—dyx — adyv, xeT(t) (1¢)

where 0 = c¢(T — Ty,,)/ 1 is the dimensionless temperature, v is the normal velocity of the interface,
D =K /pc is a diffusion parameter, dy=oc/(I[s],) is a capillary length, x is the sum of the
principal curvatures, [V0-n] | is the jump in the normal component of the temperature (from solid
to liquid), and « is a kinetic undercooling coefficient. Here c, T, [, K, p, o and [s],, are physical
parameters representing the specific heat, the equilibrium melting temperature, the latent heat, the
thermal conductivity, the density, the surface tension and the entropy difference between phases
per unit volume ([s],, =4 in the normalization used here), respectively. Using a scaling introduced
in [31], we derive the corresponding phase-field model from (1):

€
ae’ p =2 Ap + %(p—p%—i—%@ (2a)

0 + Lpi=DAO (2b)

where ¢ is a measure of the diffuse interface thickness. The above phase-field equations are derived
using the idea of a phase-order parameter p and Landau—Ginzburg theory. Equation (2b) is an
energy balance equation, and the evolution equation for p, (2a), is obtained from

op oF
2
Tt — = — — 3
Ot op )
Here, F is a free energy functional and defined by
1
F(p.T)= /Q [Erz(vmz +h(p, T)} dx )
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1676 Z. TAN AND Y. HUANG

where h(p, T) is a free energy density of the form

_&lslm

20 L~ Tmp &)
ao

1
h(p, T)=§<p2 —1)?

Both parameters t and a are length scales related to the macroscopic physics. In particular, the
surface tension ¢ and the interfacial thickness ¢ are related by

o=%¢/a=3t/Ja and e=1/a (6)

In [32] Caginalp gave a diagram of limits of phase-field equations and showed that if ¢ — 0 while
all other parameters are held fixed, then the asymptotic solutions of (2) are, to leading order,
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Figure 1. Critical radius equilibrium: grid (top) and interface prediction (bottom) with
e=1/(160+/2), dy =0.5 and Ro=0.24. Left: r =0.04 and right: £ =0.08.
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CRANK-NICOLSON METHOD FOR THE NUMERICAL SOLUTION 1677

solutions of the modified Stefan problem (1). We refer the readers to [6, 10, 31, 32] and references
therein for more details.

The boundary conditions for the phase-field equations are the same as the sharp interface model
for 6, with compatible conditions for p. For example, if Dirichlet conditions are imposed on
0 =10+, where + denotes the liquid and solid boundaries, respectively, then the corresponding
values of p are the largest (p4) and smallest (p_) roots of

_ 1 3 & o _
f(P,H)—E(Pi—Pi)‘i‘%@i—O @)

The above requirement ensures that there is no mass flow out of the system (see, e.g. [6,7, 10]).
Then the two phases are characterized by p taking values close to p; and p_ in each phase.
To be more specific, consider the critical radius equilibrium example in Figure 1. At the bound-
ary of the square domain, we use 0L =—2. The corresponding boundary conditions for p are
p = p4+ if the boundary point is above the predicted interface and p = p_ if it is below the
interface.

It is noted that other phase-field models have been proposed that allow a simpler implementation
of boundary conditions for p, see, e.g. Wang et al. [9].

3. TWO-DIMENSIONAL PDE SOLVERS

Our moving mesh method is formed by two independent parts: PDE solver and the grid
redistribution. The first part is discussed in this section, while the second part will
be introduced in Section 4. To allow flexibility of handling complex geometry and of using fast
solution solvers, we first transform the underlying PDEs (2) using the coordinate
transform

x=x(&m, y=y&mn and {=<(x,y), n=n(x,y) ®)
where (x, ¥) and (&, i) are the physical and computational coordinates, respectively, and then solve
the resulting equations in the computational domain equipped with a (fixed) uniform mesh. In our
computations, we restrict our attention to the structured quadrangular mesh, and the temperature
0 and the phase p are defined at cell centers. The cell-centered finite volume method will be

employed to solve the transformed PDEs. The &- and y-derivatives of x and y are approximated
at the midpoints of the cell edges and the cell center points as follows:

(Z)js1pk=ZLjrix—Z ks (Z)jir12=5(Z jr1k+Z jrrn1 —Z jo1 k=2 j-1k+1)
Ejkr12=Zjii1—Z ke (L) js124=5Z jsr1+Z jr1x601—ZL jk-1—Z j41,k-1)
(Ze)jr1/2kr12= %(5j+1,1< +Z i1 — Lk — Zjk+1)
(Zp)j+r12k+12= %(gj,kJrl +Z k1 —Zjk—Zjr1k), ZL=xory
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1678 Z. TAN AND Y. HUANG

In order to obtain the transformed PDEs, the key point here is to obtain the transformations for
Ap and AQ. Note that

(I _ _ _
W =17y Wode = U yemnWde = U™ yenWely + (U7 i W) ©)

| - - -
Wyy= 107 Woe = (I xexy Wy = (™ xaxy Wedy + (7 xE W)y (10)

where J = x¢y; — X, y¢ is the Jacobian of the coordinate transformation, and W = p or 0. Denoting

j=j+1/2and k =k+1/2, the following symmetric discretizations at cell centers (¢ 1725 Mkg172)
will be used to approximate terms on the right-hand side of (9):

—-1.2 —-1.2
[Ty Waels i =y Wi = W)

1.2
=i i Wi =W o) (11a)

—1 1, 7-1
[ = yeWpels i =—2( yey) 7o i Wit i — Wi i)

+ %(Jilyfyrl)f—l,%(wj—l,ﬁ+l = Ws_ i) (11b)

—1 1,7-1
L= yemWonl; = =3y j it Wips g = Wiy i)

1 —1
+ 2y imi Wiy imr = Wi i) (I1c)

—1.2 —-1.2
LYWl =YD 7 koW = W5 0)
1.2
— YD1 Wi i=Wi i) (11d)
where for simplicity we have assumed that A=An=1. The terms on the right-hand side of

(10) can be approximated similarly. Having these approximations, we are able to approximate the
Laplacian AW by

_ l . _
BiW)jg=7— X ¥ CUWi r,. W=poro (12)
g ——
where
+1,-1 _ _ _ _
Cor = E 5l ey jay it Uy oy U ™ e g0 e ] (132)
0,1 _ 7—1.2y__ 1,2y
Cor =0kt t U XD ka1 (13b)
£10_ -2y N
Cr =Vt U 5500 (13¢)
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0,0 —1
Cj,;; ~! )j+1/2k - yn)j 1k~ yé)jk+1/2 e yc)jkl/Z

-1.2 -1,2 -1.2 ~1.2
)ik — U550k — U x5 — x5 5, (13d)
Cj_,l{ =307 ey ita(d” ycyn)j pta” xsxn), LitalT xcxﬂ)/ i (139

1,1 1, 7—1 1, 7—1 1,7-1
C;’,; =—zU nyn)j i1~z yiyn)j+1,1€_Z(J xixn)]+1,1€
(J xqu)] Pl (13f)

Next we solve (2) by a finite volume approach. Denote the control cell [}, &4 11X [, ng41]1 by
Bj11/2,k+1/2 and the cell average values by

_ 1 / - 1
[ — p(E "y dédy, 057 = / 0(&, n, t")dédn
ik ALAn Bjt1/2.k+1/2 7 AfA” Bjt1/2.k+1/2

For ease of notations, below we will drop the top bar for p+ H and 0+ 2 respectively. First, we
assume that the time interval [0, T'] is partitioned by 0=1"<¢!<... <N =T with a constant
time stepping, i.e. Ar =¢"t1 — ¢ is constant. Denoting ¢"+1/% = (t”Jrl + 1) /2, we easily know
T = (12 4 312y 2 and Ar =132 — 7172 We discretize the phase-field equations (2)
in time using an alternating Crank—Nicolson finite difference method, i.e. we apply the Crank—
Nicolson method to the first equation at "1/ and the second equation at "*! in (2), this gives

T pft i +1y ..
asz p],k p],k _gz(Ahp")]’k‘F(Ahp" )j,k l( n_;’_]/z ( n+1/2)3)
Y 2 2 Pji
& m+1/2
— 0" 14
3do ik (142)
n+3/2 n+1/2
At N 2

1 1
— 5 | E@p" <p"+1 w5

n+1/2
¢ 0]k +0

3dy 2

n+3/2
(14b)

For simplicity, the second term in the right-hand side of Equation (14a) is approximated by

(2 n+1/2)3)

p~~ I’l+1 n+1) )

=3P — W5 )7+ P — (%

Given the temperature 0"+1/2 and the phase p" at the time ", we can obtain p"*! for solving
the phase equation (14a). Note that in Equation (14b) p"*! is already available from solving
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1680 Z. TAN AND Y. HUANG

Equation (14a), then we can obtain 0"+3/2 for solving Equation (14b). Similarly, 0"+3/2 can be

used in the next step #"*3/2 for computing p”"*+2. Therefore, the advantage of our alternating
Crank—Nicolson method is that we automatically obtain two decoupled discrete subsystems by
marching in time with p and 0 alternately.

To start the time integration, one only needs to compute 0'/2 separately with the accuracy of
O(Ar)?, which can be done in many ways. In our computation, we can compute d,0(0) by

11 1 .
0,000)=DA,0° — —— | 2Ap° + — (" — (p%)3 0
+0(0) h 2 w2 [8 P +2(P (P))+3d0u

Substituting this in Taylor’s expansion
0(t'/%) = 0(0) + 3,0(0)At/2 + O(Ar)?

leads to an approximation to 6(¢'/?) with second-order accuracy. An alternative is to use the
predictor—corrector method for calculating 0(z'/?), as in [33].

The alternating approach described above solves a much smaller nonlinear system compared
with larger system solved by Beckett et al. [29] and Tan et al. [15]. Equation (14a) is a small
semilinear system, which is solved by Newton’s method. At each time step, the initial guess for
p"t1 is obtained from the previous time step, i.e. p"+1:0 = p”. The resulting linear algebra system
from each Newton iteration and the linear SPD systems from Equation (14b) are solved by using
the conjugate gradient iteration method.

4. MOVING MESH METHODS

The basic idea of the moving mesh method is to relocate grid points in a mesh having a fixed
number of nodes in such a way that the nodes remain concentrated in regions of rapid variation of
the solution. The principal ingredient of the moving mesh methods is the so-called equidistribution
principle. In one dimension, it involves selecting mesh points such that some measure of the
solution such as arclength or computed error is equalized over each subinterval. This measure is
often connected to an indicator function called monitor function.

With the numerical scheme (14), we can advance the numerical solution one time step to
t =t,41. Then the following strategy is employed to carry out the grid restructuring [15]:

(a) solve the mesh redistributing equation (a generalized Laplacian equation) by one Gauss—
Seidel iteration, to get x(k)'";

(b) interpolate the approximate solutions on the new grid x%)";

(c) obtain a weighted average of the locally calculated monitor at each computational cell and
the surrounding monitor values;

(d) the iteration procedure (a)—(c) on grid-motion and solution-interpolation is continued until
there is no significant change in calculating the new grid from one iteration to the next.

4.1. Mesh generation
The mesh is generated via variational approach. Let x = (x, y) and & = (¢, ) denote the physical

and computational coordinates. A coordinate mapping from the computational domain €. to the
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physical domain Q,, is given by
x=x(m, y=y&n (15)

and the inverse map is

¢=<Cx,y), n=nlx,y) (16)

The specific map is obtained by minimizing of a mesh adaptation functional of the following form:
Eléen=~ [ (vEGT've+ VTG Vi drd 17
[g,n]—59(51c+f12n)xy (17)

P

where G| and Gy are given symmetric positive-definite matrices called monitor functions. In
general, monitor functions depend on the underlying solution to be adapted and its derivatives.
More terms can be added to the functional (17) to control other aspects of the adaptive mesh such
as orthogonality and mesh alignment with a given vector field [14, 34].

In this work, the adaptive mesh is determined by the corresponding Euler-Lagrange equations:

V- (G]'VEH=0, V-(G,'Vip=0 (18)

One of the simplest choices of monitor function is G; = Gy = wl , where [ is the identity matrix
and o is a positive weight function. One typical choice of the weight function is w =+/1 + |Vu/|2,
where u is a solution of the underlying PDEs. This choice of the monitor function corresponds to
Winslows variable diffusion method [35]:

V. (l vg) =0, V- (l vn) =0 (19)
w w

Equation (18) gives the coordinate transformation in mesh generation and adaptation. Grid gener-
ation is basically to obtain the curvilinear coordinate system (15) from the above elliptic system
(18). Usually, after solving the system (18) for £(x), we find the inverse map to obtain x(&), which
is expensive. Certainly, we can directly solve the corresponding equations on the computational
domain Q. by interchanging the dependent and independent variables in (18). However, the ob-
tained equations are complicated and massive computations are required. An alternative approach,
as suggested by Ceniceros and Hou [36], is to consider a functional defined in the computational
domain directly:

~ 1 ~ ~ ~ ~
Elx,y]= 5 / (VIxG1Vx + VTyG,Vy)dédy (20)
Q.
to replace the convectional (17), where G| and G, are again the monitor functions and V =
(0¢, (3,7)T. The corresponding Euler—Lagrange equations are then of the form:
V- (G1Vx)=0, V-(G2Vy)=0 (21)

If we take the monitor function with the simplest form G| = G, =wl, then Equation (21) is
reduced to

V- (wVx)=0, V-(wVy)=0 (22)
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In our computations, we use the Gauss—Seidel-type iteration method [17] to solve the mesh-
moving Equation (22). For example, the iteration method for (22) is written as follows:

) )41 1 +1
Otj+1/2,k(X5-‘J]r1,k 5‘k+ h - oj—1/2, k(X[Hr ] [‘jl ]k)
+1 [v+1 +1]
+ Bt p & kg =X = By p T =X = (23)
for 1<j<N¢ and 1<k<Ny, v=0, 1, ..., where N¢ and N, are the number of mesh points in the

x- and y-direction, respectively, and
) _ [v] — (Lo V] vl
%jr1/2k = OW 4y o 1 ) =OGW; L i1 T Wiy k—12))

1,.[v] [v]
Bjv1/2.4= “’(”1 kil/z) OG0 k12 T U1 ga1/2)

The iteration is continued until there is no significant change in calculating new grids from one
iteration to the next. In practice, a few iterations are required at each time level; hence, the cost
for generating new mesh is not too expensive.

Let x; 4 and X; ; be coordinates of the old and new grid points, respectively, and at the same
time Ajy1/2k+1/2 and A j+1/2,k+1/2 denote the quadrangles with four vertices (Xj4p x+4) and
(Xj4p.k+q)> P> q €10, 1}, respectively. After generating the new mesh at each iterative step ac-
cording to the monitor function, we need to remap the approximate solutions onto the newly
resulting mesh {X; x} from the old mesh {X; x}. In our computations, the remapping procedure of
the temperature 0 and the phase p can be realized by using the conservative interpolation technique
proposed by Tang and Tang [17], which is

1A j 1244121051 20412 = 1A j 412041 21Uj 412,041 )2 — [(C,Z,U)j+1,k+1/2

(AU jks12] = LGS 1001 + (AU js104]  (24)

where U =0 or p, and cl :=c*nl + cynly with mesh velocity (c*,¢’)=(x — X,y — y) and the
unit outward normal direction n! = (ni, nly) on the corresponding surface of the control volume
Aji12,k+1/2 forl=1,2,3, 4. More detailed explanation can be found in [17]. The above formula
is obtained using the classical perturbation theory. It is obvious that the discretization form (24)
satisfies the mass conservation in the following discrete sense:

Z|Aj+1/2,k+1/2|0j+1/2,k+1/2 =Y 1Ajr12k+121Uj41/24412, U=0orp
j’k j’k

where [Aj 1,2 k+1/2] and |/i j+1/2,k+1/2| means the areas of the corresponding control cells. Some
theoretical properties of this conservative interpolation can be found in [17]. Recently, Zhang [37]
presented a new conservative interpolation, which may be more accurate and robust than the Tang
and Tang’s interpolation scheme [17]. However, it remains to be seen the implementation for higher
dimensions.

In order to obtain smoother transitions in the mesh, rather than merely using equations (22),
an additional filter is applied to the monitor functions. Instead of working with w;;, the smoothed
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values
= 4 2. L .. ..
wl,] <~ Ewl,] + E(wl-‘rl,J + C01—1,] + wl,]-‘rl +wl,]—1)
1
+ig(Wim1,j—1 + ®i—1 j+1 + Oit1,j—1 + Oit1 j+1) (25)

are being used in the mesh equations.

5. NUMERICAL EXAMPLES

In this section, two numerical experiments will be carried out to demonstrate the effectiveness of
our algorithm proposed in this work.

5.1. Critical radius equilibrium

Consider a domain Q that has no heat flux into it and within this domain the initial temperature
is equal to a constant, O¢yo1. Let us introduce an initial ball of solid of radius Rg lying inside the
undercooled liquid. It is well known that there exists a steady-state solution of (1) where the solid
ball is in equilibrium with its melt [38]. This occurs when the radius of the solid ball, R, is given
by

do

R, =— (26)
¢ 00001

This equilibrium is unstable in that if Ro<R, then the solid sphere will melt and the radius will
decrease to zero. On the other hand, if Ry> R, then the solid will expand into the undercooled
melt and the radius will increase.

Following [29], we take the initial temperature to be O¢oo1 = — 2 and dy = 0.5 with parameters
D =1 and o = 1. The other physical parameters are chosenas p=1,c=1,l=1, K = 1,7=0.1151,
a=0.001473 and ¢ =2.0. It follows from (26) that R. =0.25. The phase-field calculations are
performed with &= 1/(160+/2). Let r(x) denote a signed normal distance from the point X to the
interface I' (i.e. 7(x) is the distance to the interface if it is in the liquid region and minus the
distance if the point is in the solid region). The initial phase profile is given by

p(x, 0) = ppc tanh (LX))
2¢e

where

—min f(p, Ocoo1), closestto—1, r(x)<0
p

Pbe = 27
‘ min f(p, Ocoo1), closestto 1, r(x)=0
p

and f(p,0) is given by (7). We consider two cases where the initial radius is Rop=0.24 and
Ro=0.26, which corresponds to the unstable case of Ry<R, and Ro> R, respectively, in the
domain [0, 0.5]°.

Figures 1 and 2 show the grids and front positions at times ¢ =0.04, 0.08, 0.14 and r =0.16
when Ro = 0.24, obtained by using a 60> moving grid. As expected, the interface moves inwards
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Figure 2. Same as Figure 1, except with t = 0.14 (left) and  =0.16 (right).

with decreasing radius, and the interface radius versus time is given in Figure 3. The front positions
agree very well with the moving mesh results of Beckett et al. [29] and the uniform mesh results of
Elliott and Gardiner [7] who used a 1282 uniform grid. For comparison, we also plot in Figure 3 the
radial positions with uniform meshes, the dotted line denoting the solution using a 200 uniform
grid and the dash dot line denoting the solution using a 300% uniform grid. The monitor function

used in (22) is
w=4/1+100|Vp|? (28)

There is no exact analytical solution for this problem. To test the accuracy, we use the result of the
numerical solution computed with the same method on a 10242 uniform grid as the exact solution
in the error analysis. Table I shows the computed /!-errors and convergence rates at time ¢ =0.1,
and the second-order accuracy can be obtained.
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Figure 3. Critical radius equilibrium: the interface radius versus time. The solid line denotes the solution
obtained using a 60> moving grid, the dotted line denotes the solution using a 200> uniform grid and
the dash dot line denotes the solution using a 300% uniform grid.

Table I. Numerical errors and convergence rates for the critical radius
equilibrium problem with Ry =0.24 at time ¢ =0.1.

N 1 -error (6) 0-order 1 -error (p) p-order
30 3.172e-2 — 2.684e—2 —
60 8.825¢—3 1.846 7.633e—3 1.814

120 2.341e—3 1.915 2.051e—3 1.896

240 5.958¢—4 1.974 5.264e—4 1.962

0 and p represent the temperature and the phase, respectively.

For the case of Ryp=0.26, the results obtained were also as expected, with the solid ball
growing outwards and the supercooled liquid solidifying. The grids and front positions at times
t=0.04,0.08,0.16 and t =0.18 are presented in Figures 4 and 5, the same number of grids and
monitor function are taken in this case. In Figure 6, we present the radial positions for both
interfaces, the solid line denotes the solution obtained with Ry =0.24 and the dashed denotes the
solution with Ry =0.26.

5.2. Scaled viscous Chan—Hilliard problem

The viscous Cahn-Hilliard equation [4] arises from the phase-field model by the eliminating 0,
from (2b). Let us consider a circular domain Q of radius R and that homogeneous Neumann data for
0 is imposed on the fixed boundary r = R. Initially we have two circular interfaces with Ry =0.15
and Ro =0.30. If we assume radial symmetry then the sharp interface problem is equivalent to
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Figure 4. Critical radius equilibrium: grid (top) and interface prediction (bottom) with
£=1/(160+/2), dy=0.5 and Ry =0.26. Left:  =0.04 and right: r =0.08.

solving Laplace’s equation
1
;(}"9,«(7’, 1)r=0

which has solution

B(t) O<r<Ry(t)
0r,t)y={ At Inr+b7(1) Ri(t)<r<Ro(t) (29)
B~ () r>Ro(t)
Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1673-1693
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Figure 5. Same as Figure 4, except with t =0.16 (left) and r =0.18 (right).

At r = Ry(¢) and r = Ro(t), we obtain from the jump condition (1b) that

dRo(t
Ro o)

R
Idt

dRi(r)

dt

and to ensure conservation of mass we require

—A* ()

R3(t) = RE(t) + 9

where 0 is a constant determined by the initial values of the radius.

From condition (1c) we have

B(t) =0(Ri(t),1) = — ——— —doo

Copyright © 2007 John Wiley & Sons, Ltd.

do
Ry (1)

dRy(7)
dr

(30)
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Figure 6. Critical radius equilibrium: the interface radius versus time. The solid line denotes the solution
obtained with Ry =0.24 and the dashed line denotes the solution with Ry =0.26.
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Figure 7. Scaled viscous Cahn—Hilliard problem: the interface radius versus time. The solid lines denote the
phase-field solution, the symbolized dashed lines denote the sharp interface solution.

and
do dRo(1)
B~ (t)=0(Ro(t),1) = + doo
(1) =0(Ro(1), 1) Rowy "0y,
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Figure 8. Scaled viscous Chan-Hilliard problem: grid (top) and interface prediction (bottom) with
&= l/(320\/§), do=0.5, Ri=0.15 and Rp =0.3. Left: t =0.0013 and right:  =0.0039.

Using the above information we find that

1 1
—d —_—
dRi(1) _ 0 (Ro(t) i RI(t)) 31)
dr Ri(t) Ro(1)
doo (1 + Ro(t)> + Ri(2) In ( 0 )

By introducing (31), we can compare the analytical interface solution to the sharp interface problem
with the phase-field solution by using moving mesh method later. Equation (31) is an ODE system,
and we solve (31) using a Runge—Kutta method by Shu and Osher [39] with =1 and dy =0.5.
More precisely, for the ODE system u’(¢) = L(u), where u = Ry, we use

uD =u" + ArL W)
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X X

w® = 30" 4 L ® ¢ ArL V)]

u"tl = %u" + %[u(z) + AtL(u®)]

The results for Ry(z) and Ro(t) as symbolized dashed lines are shown in Figure 7. It can be seen
that both balls decrease in size with the inner ball shrinking faster than the outer ball.

In our computations, we set the physical parameters appeared in Section 2 tobe D=1, p=1,
c=0,l=1, K=1, 1=0.08142, a =0.0007366 and ¢ =2.0. We solve the phase-field equations
with e=1/ (320+/2) by using a 60> moving grid in the domain [0, 0.5]?. The monitor function
used in (22) is again of the form (28). Meshes and the corresponding front prediction at the times
t =0.0013, 0.0039, 0.0078 and t =0.0117 are plotted in Figures 8 and 9. It is observed that the
meshes are clustered in the neighborhood of the two interfaces. As expected, both the interfaces
move inwards with decreasing radius of the inner ball. The radial positions versus time for both
interfaces are presented in Figure 7. We can see that the computed interface positions agree very
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well with the reference solution. Again, these are in good agreement with the moving mesh results
of Beckett et al. [29] and the uniform mesh results of Elliott and Gardiner [7]. The monitor function
used in (22) is again of the form (28).

We now briefly discuss the nonlinear iterations used in solving the system (14). In general, the
number of Newton iterations depends on the size of the mesh points and numerical schemes used
(i.e. uniform or adaptive). In the above computation (with a 60% grid), it takes 35 iterations with
moving mesh, and 4-5 iterations with a 300? grid on uniform mesh. Finally, we want to briefly
discuss about the time steps used in our computations. On the moving mesh methods for evolution,
the selection of time step size is always an issue. For the computations in the paper, the time step for
the critical radius equilibrium problem is 103 and for the scaled viscous Chan—Hilliard problem
is 10~*. By comparing with the uniform mesh approach, to reach the same resolutions the moving
mesh method only gains in using less grid points in space but does not gain anything in time
stepping. To increase the efficiency in time stepping, proper local time stepping techniques may
be used [16].

6. CONCLUDING REMARKS

In this paper, we have presented an effective alternating Crank—Nicolson method of Mu and
Huang [20] for solving two-dimensional phase-field equations on adaptive moving meshes. Its
main advantage is that the two discrete unknown variables 0 and p are decoupled, and governing
by one semi-linear and one linear algebraic systems, respectively. Two algebraic systems are
solved by effective iteration such as the Newton’s method and the conjugate gradient method. The
method gives rise to smooth mesh trajectories and results in significant efficiency savings over
uniform mesh methods. The numerical results are in good agreement with the recent moving mesh
computations of Mackenzie et al. [27-29], not only in terms of accuracy but also efficiency. Our
moving mesh approach, same as that in the literatures e.g. [22], is formed by two independent parts:
the grid redistribution and PDE solver. This approach requires using an interpolation to transform
the information from the old mesh to the new mesh. In this work, we have used the second-order
conservative interpolation proposed in [17]. It is noted that the approaches of Mackenzie et al. used
a monitor function tailored for the functional variation of the phase field in the interfacial region.
However, our approach does not require special attention to the choice of the monitor function,
which simply used the standard gradient-based monitors. Numerical experiments demonstrate the
efficiency of the proposed algorithm.
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